Skip to main content
Log in

Enriching the repertoire of SSR markers of Ethiopian mustard using cross-transferability approach

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

In the present investigation, cross-transferability of 125 B. rapa specific and 70 B. nigra specific genomic-SSRs had been evaluated in 16 genotypes of B. carinata (Ethiopian mustard) with an aim to develop genomic resources for Ethiopian mustard. A cross-transferability rate of 82.4% (103 SSRs) and 84.3% (59 SSRs) had been obtained for B. rapa- and B. nigra- derived SSRs, respectively, out of which 66 (64.1%) of B. rapa- and 37 (62.7%) of B. nigra- SSRs resulted into polymorphic amplicons. Comparison of polymorphism parameters including PIC value, gene diversity and heterozygosity values revealed that B. nigra-SSRs were more efficient in terms of transferability rate and polymorphic potential than B. rapa-SSRs. Unweighted pair group method with arithmetic averages-dendrogram divided Ethiopian mustard genotypes into four groups. This newly characterized set of SSR markers will enrich the repertoire of B. carinata SSRs and would provide new paradigms for B. carinata genomics-based improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All the data and plant material is available with the corresponding author (KHS).

References

  • Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27, 617–631.

    Article  CAS  Google Scholar 

  • Atri, S., Sharma, S., & Banga, S. S. (2018). Genome specific microsatellites in wild crucifers: Cross species/genera transferability. Indian Journal of Biotechnology, 17, 80–90.

    CAS  Google Scholar 

  • Chauhan, J. S., Singh, K. H., Singh, V. V., & Kumar, S. (2011). Hundred years of rapeseed-mustard breeding in India: Accomplishments and future strategies. Indian Journal of Agricultural Sciences, 81, 1093–1109.

    Google Scholar 

  • Getinet, A., Rakow, G., & Downey, R. K. (1996). Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Canadian Journal of Plant Science, 76, 387–392.

    Article  Google Scholar 

  • Gruppen, G. J. H., & Denton, O. A. (2004). Brassica carinata. Prota 2 Vegetables (pp. 119–123). Backhuys Publication.

    Google Scholar 

  • Guo, S., Zou, J., Li, R., Long, Y., Chen, S., & Meng, J. (2012). A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theoretical and Applied Genetics., 125, 1113–1124.

    Article  CAS  Google Scholar 

  • Hopkins, C. J., Cogan, N. O. I., Hand, M., Jewell, E., Kaur, J., Li, X., et al. (2007). Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species amplification. Molecular Ecology Notes, 7, 697–700.

    Article  CAS  Google Scholar 

  • Kalia, R. K., Rai, M. K., Kalia, S., Singh, R., & Dhawan, A. K. (2011). Microsatellite markers: An overview of the recent progress in plants. Euphytica, 177, 309–334.

    Article  CAS  Google Scholar 

  • Katiyar, R. K., Saran, G., & Giri, G. (1986). Evaluation of Brassica carinata as a new oilseed crop in India. Experimental Agriculture, 22, 67–70.

    Article  Google Scholar 

  • Liu, K., & Muse, M. (2005). PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21, 2128–2129.

    Article  CAS  Google Scholar 

  • Malik, R. S. (1990). Prospects for Brassica carinata as an oilseed crop in India. Experimental Agriculture, 26, 125–130.

    Article  Google Scholar 

  • Márquez-Lema, A., Velasco, L., & Pérez-Vich, B. (2010). Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species. J App Genet, 51, 123–131.

    Article  Google Scholar 

  • Mendlinger, S., Chadha, M. L., Oluoch, M., & Volis, S. (2006). Germplasm collection, evaluation and improvement of African leafy vegetables. Report to USAID TA-MOU-C21-054.

  • Nagaharu, U. (1935). Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Journal of Japanese Botany, 7, 89–452.

    Google Scholar 

  • Nanjundan, J., Singh, K., Singh, K. H., & Singh, D. (2014). Catalogue on rapeseed-mustard germplasm. Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan (p. 180).

  • Phan, H. T., Ellwood, S. R., Hane, J. K., Ford, R., Materne, M., & Oliver, R. P. (2007). Extensive microsynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theoretical and Applied Genetics, 114, 549–558.

    Article  Google Scholar 

  • Plieske, J., & Struss, D. (2001). Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theoretical and Applied Genetics, 102, 689–694.

    Article  CAS  Google Scholar 

  • Rakow, G. (1995). Developments in the breeding of edible oil in other Brassica species. In Proceedings of the 9th international rapeseed conference, 4–7 July, 1995, Cambridge, UK (pp. 401–406).

  • Sharma, B. B., Kalia, P., Singh, D., & Sharma, T. R. (2017). Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleracea botrytis group) through embryo rescue. Frontiers in Plant Science, 8, 1255.

    Article  Google Scholar 

  • Sheikh, F. A., Najeeb, S., Rather, A. G., & Banga, S. (2010). Resynthesis of Ethiopian mustard (Brassica carinata L.) from related digenomic species: An unexplored possibility. Journal of Agricultural Biotechnology and Sustainable Development, 2, 30–34.

    Google Scholar 

  • Simmonds, N. W. (1979). Principles of crop improvement. Longman.

    Google Scholar 

  • Singh, H., Singh, D., & Yadava, T. P. (1988). Comparative performance of the genotypes of Indian and Ethiopian mustard under semi-arid region of India. Cruciferae Newslett, 13, 36–37.

    Google Scholar 

  • Singh, K. H., Shakya, R., Singh, K. K., Thakur, A. K., Nanjundan, J., & Singh, D. (2015). Genetic enhancement of Brassica carinata through interspecific hybridization and population improvement. In 14th international rapeseed congress (p. 281).

  • Teklewold, A., & Becker, H. C. (2006). Geographic pattern of genetic diversity among 43 Ethiopian mustard (Brassica carinata A. Braun) accessions as revealed by RAPD analysis. Genetic Resources and Crop Evolution, 53, 1173–1185.

    Article  Google Scholar 

  • Thakur, A. K., Singh, K. H., Lal, S., Nanjundan, J., Yasin, J. K., & Singh, D. (2018). SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. Hereditas, 155, 6.

    Article  Google Scholar 

  • Thakur, A. K., Singh, K. H., Singh, L., Nanjundan, J., Rana, M. K., & Singh, D. (2015). Transferability of SSR markers of Brassica species to some popular varieties of Brassica juncea. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 1001–1010.

    Article  CAS  Google Scholar 

  • Thakur, A. K., Singh, B. K., Verma, V., & Chauhan, J. S. (2013). Direct organogenesis in Brassica juncea var. NRCDR-2 and analysis of genetic uniformity using RAPD markers. National Academy Science Letters, 36, 403–409.

    Article  CAS  Google Scholar 

  • Tsunoda, S. (1980). Eco-physiology of wild and cultivated forms in Brassica and allied genera. In S. Tsunoda, K. Hinata, & C. Gómez-Campo (Eds.), Brassica crops and wild allies (pp. 109–120). Japan Scientific Societies Press.

    Google Scholar 

  • Warwick, S. I. (2011). Brassicaceae in agriculture. In R. Schmidt & I. Bancroft (Eds.), Genetics and genomics of the Brassicaceae (pp. 33–65). New York: Springer.

    Chapter  Google Scholar 

  • Warwick, S. I., Gugel, R. K., McDonald, T., & Falk, K. C. (2006). Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genetic Resources and Crop Evolution, 53, 297–312.

    Article  CAS  Google Scholar 

  • Wei, Z., Wang, M., Chang, S., Wu, C., Liu, P., Meng, J., et al. (2016). Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis. Frontiers in Plant Science, 7, 1677.

    PubMed  PubMed Central  Google Scholar 

  • Xiao, Y., Chen, L., Zou, J., Tian, E., Xia, W., & Meng, J. (2010). Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics, 121, 1141–1150.

    Article  Google Scholar 

  • Xu, J., Qian, X., Wang, X., Li, R., Cheng, X., Yang, Y., Fu, J., Zhang, S., King, G. J., Wu, J., & Liu, K. (2010). Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 11, 594.

    Article  Google Scholar 

  • Yadava, D. K., Parida, S. K., Dwivedi, S. K., Varshney, A., Ghazi, I. A., Sujata, V., & Mohapatra, T. (2009). Cross-transferability and polymorphic potential of genomic STMS markers of Brassica Species. Journal of Plant Biochemistry and Biotechnology, 18, 29–36.

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to thank Indian Council of Agricultural Research (ICAR), New Delhi for funding this work under ICAR-Extra-Mural Research Grant Scheme.

Author information

Authors and Affiliations

Authors

Contributions

AKT & KHS formulated the research methodology; DS, NP, LS & JN prepared the draft; DCM performed the data analysis, and AKT & KHS edited and finalized the manuscript.

Corresponding author

Correspondence to K. H. Singh.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Singh, K.H., Sharma, D. et al. Enriching the repertoire of SSR markers of Ethiopian mustard using cross-transferability approach. Plant Physiol. Rep. 27, 65–72 (2022). https://doi.org/10.1007/s40502-021-00639-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00639-4

Keywords

Navigation